Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-(2-Cyanoethylsulfanyl)-4-methylsulfanyl-1,3-dithiole-2-thione

Anders Madsen, Kent A. Nielsen, Andrew D. Bond* and Jan O. Jeppesen

University of Southern Denmark, Department of Chemistry, Campusvej 55, 5230 Odense M, Denmark

Correspondence e-mail: adb@chem.sdu.dk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.026$
$w R$ factor $=0.061$
Data-to-parameter ratio $=17.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NS}_{5}$, at 180 K , reveals intermolecular $\mathrm{N} \cdots \sigma^{*}(\mathrm{~S}-\mathrm{C})$ and $\mathrm{S} \cdots \sigma^{*}(\mathrm{~S}-$ C) interactions.

Comment

The crystal structure of the title compound, (I) (Fig. 1), was solved using data recorded at 180 K .

(I)

The C atom of the methyl group is coplanar with the 1,3-dithiole-2-thione plane [torsion angle $\mathrm{C} 4-\mathrm{S} 4-\mathrm{C} 2-\mathrm{C} 3=$ $-179.89(16)^{\circ}$. However, in the analogous bis(methylsulfanyl) compound (Simonsen et al., 1990), both methyl groups lie out of the molecular plane $[\mathrm{C}-\mathrm{S}-\mathrm{C}-\mathrm{C}$ torsion angles are -121.6 (3) and $\left.156.2(2)^{\circ}\right]$. The $\mathrm{C} 6-\mathrm{C} 7 \equiv \mathrm{~N} 1$ group of the $2-$ cyanoethylsulfanyl substituent lies above the 1,3-dithiole-2thione plane, pointing approximately parallel to the S3-C3 bond (Fig. 1). A similar conformation is observed in one molecule of the asymmetric unit of the related bis(2-cyanoethylsulfanyl) compound (Yu et al., 2003). The $\mathrm{C} 6-\mathrm{C} 7 \equiv \mathrm{~N} 1$ group points towards S 4 of an adjacent molecule, forming an $\mathrm{N} 1 \cdots \mathrm{~S} 4^{\mathrm{i}}$ contact of 3.326 (2) \AA [symmetry code: (i) $-x, 1-y$,

Figure 1
The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level for non-H atoms. H atoms are shown as spheres of arbitrary radius.

Received 27 March 2006
Accepted 28 March 2006
$1-z$]. This arrangement is typical of a nucleophile approaching a $\mathrm{C}-\mathrm{S}-\mathrm{C}$ unit and has been interpreted as an interaction between a electron lone pair on N and the σ^{*} orbital of the S-C bond (Rosenfield et al., 1977). Similar interactions involve $\mathrm{S} 1 \cdots \mathrm{~S} 2^{\mathrm{ii}}=3.5354(7) \AA$ and $\mathrm{S} 1 \cdots \mathrm{~S} 5^{\mathrm{iii}}=$ 3.5816 (7) \AA [symmetry codes: (ii) $2-x, 1-y, 2-z$; (iii) $1+x$, $\left.\frac{1}{2}-y, \frac{1}{2}+z\right]$, with geometry indicative of interactions from lone pairs in $s p^{2}$-hybridized atomic orbitals on S1 (Fig. 2).

Experimental

The compound was prepared according to the literature (Simonsen et al., 1996). Recrystallization from methanol afforded yellow needleshaped crystals.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NS}_{5}$

$M_{r}=265.44$
Monoclinic, $P 2_{1} / c$
$a=5.0793$ (3) А
$b=15.7214$ (12) A
$c=13.9016$ (11) \AA
$\beta=94.186$ (3) ${ }^{\circ}$
$V=1107.13(14) \AA^{3}$
$Z=4$
$D_{x}=1.592 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3035
reflections
$\theta=2.9-25.5^{\circ}$
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Needle, yellow
$0.30 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker-Nonius X8 APEX-II CCD diffractometer
thin-slice ω and φ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.803, T_{\max }=0.907$
14011 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.061$
$S=1.08$
2108 reflections
119 parameters

Figure 2
Projection of (I) along a, showing intermolecular $\mathrm{N} \cdots \sigma^{*}(\mathrm{~S}-\mathrm{C})$ and $\mathrm{S} \cdots \sigma^{*}(\mathrm{~S}-\mathrm{C})$ interactions as pale green lines.

We are grateful to the Danish Natural Science Research Council (SNF) for funding via STENO stipends, Nos. 21-030164 (ADB) and 21-03-0317 (JOJ). We also gratefully acknowledge financial support provided by SNF through the SONS programme of the European Commission, Sixth Framework Programme, and the Strategic Research Council of Denmark through the Young Researcher's Programme (JOJ, No. 2117-05-0115).

References

Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker-Nonius (2004). APEX2. Version 1.0-22. Bruker-Nonius BV, Delft, The Netherlands.
Rosenfield, R. E. Jr, Parthasarathy, R. \& Dunitz, J. D. (1977). J. Am. Chem. Soc. 99, 4860-4862.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Simonsen, K. B., Svenstrup, N., Lau, J., Simonsen, O., Mørk, P., Kristensen, G. J. \& Becher, J. (1996). Synthesis, pp. 407-418.

Simonsen, O., Varma, K. S., Clark, A. \& Underhill, A. E. (1990). Acta Cryst. C46, 804-807.
Yu, W.-T., Xue, G., Fang, Q. \& Liu, G.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 545-546.

[^0]: © 2006 International Union of Crystallography All rights reserved

